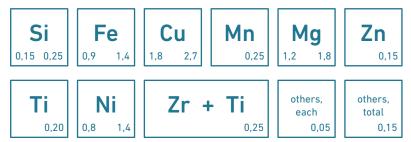


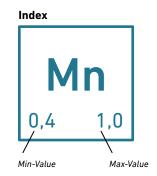
DATA AND FACTS FOR APPLICATION

EN AW-2618A

The temperature-resistant high-strength alloy


ENAW-2618A-THE TEMPERATURE RESISTANT ALLOY

The alloy EN AW-2618A belongs to the heat treatable alloys. Accordingly, a heat treatment such as solution annealing and subsequent artificial aging is necessary.


Only then can the alloy develop its full potential.

This alloy, which was developed for aerospace engineering, has higher strengths, good machinability, and average corrosion resistance. Due to its high temperature resistance, it is frequently used in areas where high strength at temperatures up to 300 °C is required.

Chemical Composition*

*according to EN-573-3 or Teal-Sheets (AA)

All values in mass %

Structure of the billets

Depending on the process, a segregation zone occurs immediately in the marginalized layer of continuously cast billets. Prior to further processing these should be removed – this is already the case for the turned billets from LEICHTMETALL. Additionally, these billets are also subjected to a final quality test by means of an automatic ultrasonic test underwater. In the case of casting lengths, the depth of the segregation zone is shown by way of example at 252 mm.

Macrosection, d252 mm: Segregation 3,1 mm

Microsection, d252 mm (25 times magnification)

Casting Length Dimensions

Ø 160 mm	Ø 178 mm	Ø 201 mm	Ø 215 mm	Ø 227 mm	Ø 252 mm	Ø 280 mm
Ø 314 mm	Ø 350 mm	Ø 372 mm	Ø 425 mm	Ø 435 mm	Ø 518 mm	Ø 607 mm
Ø 682 mm	Ø 750 mm**	Ø 930 mm*	Ø 1150 mm**			
* Q4 2022 ** 0	02 2023					

Turned billets

We can produce all diameters between 140 – 650 mm. From Q2 2023 onwards, we are able to produce diameters up to 1.100 mm.

Mechanical Properties

There is no standard for cast round rods (cast billets / bolts) that defines mechanical properties. A Brinell hardness in the homogenized state of approx. 83 HBW can be named as a guideline for cast material. The homogenized state (="03" according to EN515) is comparable in strength with the annealed state (="0") for extruded products. The final strength is essentially adjusted by the reshaping process and/or the heat treatments by our customers.

Profit from our extensive materials experience

We ship billets in the homogenized state (03). The advantage: a consistent structure as well as good properties for further processing with reshaping processes (forging and extruding). We have summarized typical attainable empirical values from our experience – in relation to the heat treatments and resulting technological properties.

Physical Properties

Density	2,8 g/cm ³
Solidification range	560 °C - 670 °C
Electr. conductivity	22,2 MS/m
Thermal conductivity	142 W/(mK)
Modulus of elasticity	72.000 MPa
Shear modulus	27.000 MPa

Mechanical Parameters

Condition	R _{p0,2} (MPa)	R _m (MPa)	A (%)
T6	330	410	7

(all stated values for extruded round rods D. up to 100 mm)

Technological Properties*

Welability	
WIG	+
MIG	+
Resistance welding	+
Surface Treatment	
Anodization protective	0
Anodisieren decorative	
Coating	0
Cold reshapeability	
Bending	+
Deep-drawing / Pressing / Upsetting	nA
Impact Extrusion	nA
Corrosion resistance Atmospheric conditions	+
Seawater	
Brazeability	
Hard soldering	
Abrasion soldering	
Soft soldering with flux	
Hot reshapeability	
Extrusion molding	-
Drop forging / Open die forging	-
Machineability	+
Use in contact with food	No

^{* ++ =} very good --- = not possible

Customer-Specific Solutions ...

Upon request we can adapt the analysis presets according to your individual processing needs and quality requirements. Various chemical compositions are possible and similarly very pure alloys can be produced with limited amounts of Natrium, Calcium or Beryllium. We are looking forward to receiving your request!

... no problem for LEICHTMETALL

High strength alloys are our Speciality. Our know-how as a foundry stretches back over 90 years. Today, demanding customers from many branches of industry – for example from Aviation, Automobile, general Machinery and Energy Management use the Premium Alloys made in Hannover, Germany.

Particularly close to our hearts, is our commitment to optimized production – saving energy and protecting the environment. To that end, for example, we use secondary aluminium from the circular economy to ensure environmental and climate protection.

Do you have questions?

Please call us at +49 511 89878 475